
Protect Your RDF Data!

Sabrina Kirrane1,2, Nuno Lopes1, Alessandra Mileo1, and Stefan Decker1

1 Digital Enterprise Research Institute
National University of Ireland, Galway

http://www.deri.ie

{firstname.lastname}@deri.ie
2 Storm Technology, Ireland

http://www.storm.ie

Abstract. The explosion of digital content and the heterogeneity of en-
terprise content sources have pushed existing data integration solutions
to their boundaries. Although RDF can be used as a representation for-
mat for integrated data, enterprises have been slow to adopt this technol-
ogy. One of the primary inhibitors to its widespread adoption in industry
is the lack of fine grained access control enforcement mechanisms avail-
able for RDF. In this paper, we provide a summary of access control
requirements based on our analysis of existing access control models and
enforcement mechanisms. We subsequently: (i) propose a set of access
control rules that can be used to provide support for these models over
RDF data; (ii) detail a framework that enforces access control restrictions
over RDF data; and (iii) evaluate our implementation of the framework
over real-world enterprise data.

1 Introduction

Data on the web and within the enterprise is continuously increasing and de-
spite advances in Information Technology (IT), it is still difficult for employees to
find relevant information in a timely manner. This problem is further magnified
when related information is segregated in different software systems. Bridging
the information contained in such systems is necessary to support employees in
their day-to-day activities. For instance, a high-level view of a customer would
enable IT support staff to quickly respond to issues raised by that customer or
additional information on drug compounds would allow a pharmaceutical com-
pany to identify potential issues with a new drug early in the drug development
process.

The Resource Description Framework (RDF) is a flexible format used to rep-
resent data on the web which can also be used for data integration [21]. An
additional benefit is that RDF data can easily be supplemented with comple-
mentary information from Linked Open Data (LOD) sources. It is possible to
use Relational Database to RDF (RDB2RDF) techniques to translate existing
relational data into RDF. However, given security is extremely important to en-
terprises we cannot simply extract the data and ignore the access control policies

http://www.deri.ie
http://www.storm.ie

Subject

ResourceAccess Rights Associated with

User

Assigned

Group Role

Has a
Part of

AssignedAssigned

Part of

Has a

Fig. 1. Components of an access control statement

that have been placed on that data. Although we could extend RDB2RDF to
extract both the data and the access control information, RDF still does not
have a mechanism to enforce existing access control policies over RDF.

Javanmardi et al. [9], Ryutov et al. [16], Amini and Jalili [1], Costabello et al.
[4], Sacco et al. [17] all propose mechanisms to supplement RDF with access con-
trol. However, each of the authors adopt a top-down approach modelling access
control based on RDF data structures. Our approach is rather to extract, model
and enforce existing access control mechanisms over RDF data. Therefore, we
adopt a bottom up approach examining the access control requirements based
on existing software engineering and database access control approaches. Based
on this analysis, we make the following contributions (i) identify the core access
control models that need to be supported; (ii) propose a set of rules that are
necessary for the enforcement of these models over RDF; and (iii) present an
access control enforcement framework for RDF. In addition, we detail our im-
plementation of the proposed enforcement framework and examine the overall
performance of our prototype over real enterprise data.

The remainder of the paper is structured as follows: in Section 2, we provide
an overview of commonly used access control models. Section 3 describes how
these models can be used in conjunction with RDF and details the rules necessary
to propagate access control policies, based on existing access control models, over
RDF data. The framework and our specific implementation are described and
evaluated in Section 4. Finally, in Section 5 we discuss related work and we
conclude and outline directions for future work in Section 6.

2 Analysis of Enterprise Access Control Models

An Access Control Model provides guidelines on how access to system resources
and data should be restricted. Whereas an Access Control Policy (ACP) details
the actual authorizations and access restrictions to be enforced. Such permissions
and prohibitions are specified as individual Access Control Statements (ACS),
represented as a tuple: 〈S,R,AR〉 where S denotes the subject, R denotes the
resource and AR represents the Access Rights. Fig. 1 depicts the relationship
between the access control terms that are used in this paper. A Resource is used

Table 1. Categorisation of access control models

Enterprise Data Models Open Systems

MAC VBAC ABAC
DAC OBAC
RBAC

to denote the information to be protected (e.g. database records, application
objects or website Uniform Resource Identifiers (URIs)). Users represent indi-
viduals requesting access to resources. We note that such individuals may or
may not be known in advance of the information request. Groups are collections
of users or roles with common features (e.g. contributors, supervisors or man-
agement). Roles are used to assign a set of access rights to a set of individuals
and groups, for example by department (human resources, sales or marketing)
or task (insurance claim processing, reporting or invoicing). The term Subject
is an umbrella term used to collectively refer to users, roles and groups. Access
Rights are generally defined as permissions and prohibitions applied to resources
and granted to subjects.

A high level categorisation of the models discussed in this section is presented
in Table. 1. In keeping with our enterprise data integration use case we focus on
access control models commonly used in enterprises; models applicable to other
data representation formats; and those that are relevant for distributed open
systems. An overview of the models is presented below. As the models will be
discussed in the next section we label them Mx where x is the name of the access
control model.

MMAC : Mandatory Access Control (MAC) [18]. In this model access to resources
is restricted through mandated policies determined by a central authority
(e.g. mainframes and lightweight directory services).

MDAC : Discretionary Access Control (DAC) [18]. Similar to MAC, access to re-
source is constrained by a central access control policy, however in contrast
to MAC users are allowed to override the central policy (e.g. employees may
be allowed to grant others access to their own resources).

MRBAC : Role Based Access Control (RBAC) [19]. Generally speaking, RBAC
involves grouping a set of access rights that describe the responsibilities
or tasks that can be performed by a role (e.g. manager, sales person and
clerk). RBAC is the most commonly used access control model in enterprise
applications.

MV BAC : View-based Access Control (VBAC) [8]. In relational database systems
VBAC is used to simultaneously grant access to one or more tables, tu-
ples or fields. A similar approach is used in Object Oriented Access Control
(OBAC) [7] where access rights are granted to application objects.

MABAC : Attribute Based Access Control (ABAC) [14]. In distributed open en-
vironments where the requester is unknown prior to the submission of the
request, an alternative means of granting access is required. In ABAC [14],

access control decisions are based on attributes (e.g. employer=storm, poli-
cyNumber=565656), in the form of digitally signed documents, that are sent
by the requester to the server.

3 Extending RDF to Support Existing Access Control
Models

In this section we examine how the access control models identified in the previ-
ous section can be used to protect RDF data. We propose a set of access control
rules required to propagate and enforce access control policies, based on these
models, over RDF data.

3.1 Annotated RDF Model

Our work relies on an extension of RDF, called Annotated RDF [22], that allows
domain specific meta-information to be attached to RDF triples. The access
rights are represented as annotations attached to individual RDF triples. The
Annotated RDF access control domain model and the annotated RDFS inference
rules are based on our previous work presented in [13] and therefore we only
provide a short overview of the domain model below. For the definitions of other
domains, namely the fuzzy, temporal and provenance domains, and an overview
of how such domains can be combined the reader is referred to Zimmermann
et al. [23].

In the following examples an NQuads [5] format is used to associate access
control meta-information with a triple. However the framework itself does not
dictate the use of an NQuads RDF serialisation, therefore alternative approaches
such as using reification or mapping annotations to triple hash-codes would work
also. Throughout the paper we assume the default prefix http://urq.deri.org/

enterprise#.
In Annotated RDF, the domain annotations must follow a pre-defined struc-

ture that facilitates inferencing and querying. Software applications generally
provide four basic functions of persistent storage Create, Read, Update and
Delete (CRUD). Intuitively data permissions and prohibitions are modelled in a
similar fashion, whereby subjects are granted CRUD access to resources. Read ,
update, and delete could be represented as a 3-tuple ACL (R,U,D), where R
specifies the formula for read permission, U for update permission and D for
delete. A create permission has a different behaviour as it would not be attached
to any specific triple but rather to a named graph and as such enforcement would
need to be handled using rules. In this paper we use separate Access Control Lists
(ACLs) to represent the permissions as follows:

:TopSecret1 a :Project "(readACL, updateACL, deleteACL)"

However as our current implementation focuses on read access, we omit both
the updateACL and deleteACL in the following examples and present only the
readACL as "(readACL)". In the access control domain, each ACL is com-
posed of one or more Access Control Statements (ACSs) which in turn contain

http://urq.deri.org/enterprise#
http://urq.deri.org/enterprise#

Access Control Elements (ACEs) in the form of usernames, roles, groups or at-
tributes. Negated elements are used to explicitly deny access to an entity, for
example ¬:mary (where :mary is a username) indicates that :mary is denied
access. If no annotation is present it is assumed that there is no access control
information to be applied to the triple.

Example 1 (RDF Annotation). The following annotated triple:

:TopSecret1 a :Project "([[: manager], [¬:mary]])"

states that the users identified with :manager have read access to the triple
however :mary is explicitly denied access. 2

To avoid duplicate and conflicting ACLs, the model relies on a normalisation
procedure that checks for redundant ACSs and applies a conflict resolution
mechanism if necessary. The conflict resolution is applied in scenarios where
an annotation statement contains both a positive and a negative access control
element for the same entity, e.g [:mary, ¬:mary]. There are two different ways
to resolve conflicts in annotation statements, either apply: (i) a brave conflict
resolution (allow access); or (ii) a safe conflict resolution (deny access).

3.2 Support for existing Access Control Models

In this section we demonstrate how each of the access control models, presented
in 2, can be handled either by the domain model or the enforcement framework.

MMAC and MDAC . Given both models relate to the entire ACP as opposed to
an ACS, a permission management module is necessary to enable system
administrators to specify standard access control policies and system users
to perform discretionary updates to some policies.

MRBAC . RBAC can be represented using a single value element notation. The
following quad demonstrate how a single annotation can simultaneously cater
for users, roles and groups.

:WestCars1 a :Project "([[:mary , :manager , :salesDept]])"

MABAC . A key–value pair element representation is needed to support attributes.
The annotation elements outlined below are used to demonstrate how a sub-
jects employer can be represented using key–value pairs.

:WestCars1 a :Project "([[(: employer ,: storm)]])"

MV BAC . VBAC is concerned with granting access to resources based on a logical
abstraction as opposed to the physical representation, as such we propose
a number of rules that allow us to grant access based on common data
abstractions. For example, the ability to grant access to RDF data that
share, a common RDF subject (RDB tuples) or the same RDF object (RDB
attributes). In addition we support traditional access control mechanisms by
allowing access to be granted based on hierarchical data structures.

Table 2. Overview of access control rules

MMAC MDAC MRBAC MV BAC MABAC CRUD

R1
√

R2
√

R3
√ √ √ √ √

R4
√ √ √ √ √

R5
√

3.3 Proposed Access Control Rules

This section introduces a set of access control rules that enable the adminis-
tration and the enforcement of the different models presented in the previous
section. Table. 2 provides an overview of the rules required by each of the mod-
els. The table also includes a column labelled CRUD. Although access rights
are not a model per se, we have included them here as a specific rule is required
to infer access rights based on permission hierarchies.

These rules can be used to associate permissions with data that may or
may not be extracted from existing systems. Propagation chains can be broken
by explicitly specifying permissions for a particular triple. However, the rules
may need to be extended to consider provenance as it may not be desirable to
propagate permissions to related data from different sources.

In each of the rules, we represent variables with the ? prefix. In general ?S,
?P , and ?O refer to data variables while ?λ and ?E refer to annotation variables
and annotation element variables respectively. The premises (represented above
the line) correspond to a conjunction of quads, possibly with variables for any
position. Whereas the conclusion (below the line) corresponds to a single quad
where the variables are instantiated from the premises. We also assume the
premises may include functions, for example the member function is true, if
and only if, a given access control element is included in the access control list
provided. The ⊕ac operation is used to combine the access control information
associated with two triples. This operation is used to combine complete lists as
well as to combine single access control elements with access control lists, which
intuitively adds the new element to the list.

Resource Based Access. The most basic access control rule involves granting a
subject access rights to a resource. Normally the access is explicit and there-
fore no inference is required. However in order to provide support for MV BAC

we need the ability to associate access rights with several triples. As such
we need a rule to propagate access rights to all triples with the same RDF
subject. Given the following triples:

:Invoice1 a :Document "([[: john]])"

:Invoice1 :located "/dms/projs/docs"

we can infer that:

:Invoice1 a :Document "([[: john]])"

:Invoice1 :located "/dms/projs/docs" "([[: john]])"

Rule 1. Assuming that we have access rights, denoted by λ1, associated with
a triple. We can use this rule to propagate λ1 to all triples with the same
subject.

?S ?P1 ?O1 ?λ1, ?S ?P2 ?O2 ?λ2
?S ?P2 ?O2 (?λ2⊕ac?λ1)

(R1)

Hierarchical Subjects Inheritance. In MRBAC access control subjects are organ-
ised hierarchically and lower-level subjects inherit the access rights of higher-
level subjects. For example, in a role hierarchy access rights allocated to the
:manager role will be inherited by all individuals in the organisation that
have been granted the :manager role. Given the following triples:

:Invoice1 a :Document "([[: manager]])"

:john :inheritsFrom :manager

we can infer that:

:Invoice1 a :Document "([[: manager],[:john]])"

Rule 2. If ?E1 and ?E2 are access rights and ?E2 inherits from ?E1 then
triples with access rights ?E1 should also have ?E2.

?S ?P ?O ?λ1, ?E2 :inheritsFrom ?E1,member(?E1, ?λ1)

?S ?P ?O (?λ1⊕ac?E2)
(R2)

Hierarchical Subjects Subsumption. Like R2 Access Control subjects can be or-
ganised to form a hierarchy. However in this instance we are talking about an
organisation structure as opposed to a role hierarchy, in which case higher-
level subjects will subsume the access rights of lower-level subjects. For ex-
ample managers implicitly gain access to resources that their subordinates
have been explicitly granted access to. Given the following triples:

:Invoice2 a :Document "([[: john]])"

:mary :hasSubordinate :john

we can infer that:

:Invoice2 a :Document "([[: john], [:mary]])"

If an ?E2 has subordinate ?E1 then ?E2 will be granted access to any triples
?E1 has access to. Since this rule differs from Rule (R2) only in the given
vocabulary, the same rule can be reused if we replace :inheritsFrom with
:hasSubordinate.

Hierarchical Resources Inheritance. Similar principles can also be applied to re-
sources. In several of the access control models resources are organised into a
hierarchy and lower-level resources inherit the access rights of higher-level re-
sources. For example document libraries are often organised into a hierarchy.
Given the following triples:

:dmsProjs a :DocumentLibrary "([[: employee]])"

:dmsProjsRpts a :DocumentLibrary

:dmsProjsRpts :isPartOf :dmsProjs

we can infer that:

:dmsProjRpts a :DocumentLibrary "([[: employee]])"

Rule 3. Here the rule states that if an ?S2 is part of ?S1 then the access
rights of triples with ?S1 i.e. λ1 should be propagated to ?S2.

?S1 ?P1 ?O1 ?λ1, ?S2 ?P2 ?O2 ?λ2, ?S2 :isPartOf ?S1

?S2 ?P2 ?O2 (?λ2⊕ac?λ1)
(R3)

Resources Categorisation. However resources can also be categorised by type,
for example views or objects in MV BAC , and all resources of a particular
type can inherit access rights assigned to the type. Access rights placed on
a :report object can be propagated to all objects of type :report. Given
the following triples:

:Report a :Document "([[: employee]])"

:Report1 a :Report

we can infer that:

:Report1 a :Report "([[: employee]])"

Rule 4. Below the rule states that if ?O2 is a type of ?O1 then the access
rights of triples with ?O1 i.e. λ1 should be propagated to ?O2.

?S1 ?P1 ?O1 ?λ1, ?S2 ?P2 ?O2 ?λ2, ?O2 a ?O1

?S2 ?P2 ?O2 (?λ2⊕ac?λ1)
(R4)

Hierarchical Access Rights Subsumption. The access rights themselves can form
a hierarchy whereby each permission level can include the access rights of
the permission level below it. For example, we can assume update access
from delete access and read access from update access. Given the following
triples:

:Invoice3 a :Document "([[]] , [[: john]], [[]])"

we can infer that:

:Invoice3 a :Document "([[: john]], [[: john]], [[]])"

Rule 5. Assuming that the ACL is a 3-tuple (R,U,D) and the permission
hierarchy is stored as RDF. This rule states that if update is part of delete
and read is part of update then the delete access rights should be propagated
to the update annotation and the update access rights to the read annotation.

?S ?P ?O (?λ1, ?λ2, ?λ3)

?S ?P ?O ((?λ1⊕ac?λ2⊕ac?λ3), (?λ2⊕ac?λ3), ?λ3)
(R5)

Access Control Enforcement

Reasoning

Querying

Storage

RDFS/OWL

Data Integration

RDB2RDF
Converter Access Control

Rules

RDB
Access
Rights

RDF
Data

Permission
Management

Query Engine

Fig. 2. RDF Data Integration and Access Control Enforcement Framework

4 Framework, Implementation and Evaluation

Based on our analysis of existing access control models this section describes
the minimal set of components necessary for a data integration and access con-
trol enforcement framework. It provides an overview of our implementation and
presents an experimental evaluation of our prototype which focuses on the: (i) the
RDB2RDF data integration; (ii) the reasoning engine; and (iii) the query en-
gine. The aim of this evaluation is simply to show the feasibility of our approach
and, although we present different dataset sizes, at this point we are not looking
at improving scalability and thus do not propose any kind of optimisations.

4.1 Access Control Enforcement Framework

An overview of the proposed framework which is depicted in Fig. 2, is composed
of two core modules: Data Integration and Access Control Enforcement. The
Data Integration module is responsible for the conversion of existing RDB data
and access control policies to RDF. Whereas the Access Control Enforcement
module caters for the management of access rights and enables authenticated
users to query their RDF data. We do not claim that this is an exhaustive list of
the system components but rather the minimal components any access control
framework requires. Noticeably, one missing component is the authentication
component, which we do not focus on in this paper. Authentication can be
achieved by relying on WebId and self-signed certificates that work transparently
over HTTPS.

Data Integration. The Data Integration module is responsible for the extrac-
tion of data and associated access rights from the underlying relational databases
(RDBs). The information extracted is subsequently transformed into RDF and
persisted in the RDF Data and Access Rights stores. Ideally, the data integra-
tion step would be carried out in conjunction with a domain expert, for example
to assist in defining an R2RML [6] mapping that extracts and converts the re-
lational data into RDF. In a pure Semantic Web scenario, the data integration
module is optional, in which case the data and access rights need to be populated
either manually or automatically via specialised software systems.

Storage. The integrated data retrieved from the original relational databases
is stored in the RDF Data store and the access control policies over the RDF
data are stored in the Access Rights store. A link between the two stores is
necessary so that access policies can be related to existing graphs, triples, or
resources. Any RDF store can be used as a back-end for storing this data. We
do not restrict the representation format used for the ACSs which may be stored
as quads, associated with reified triples or mapped to triple hash-codes.

Reasoning. For this component we consider two distinct forms of inference:
(a) data inference, where new triples are deduced from existing ones; and (b) ac-
cess rights inference, where new ACSs are deduced from existing ones. For data
inferencing we rely on well established forms of inference in the Semantic Web
such as RDF Schema (RDFS) or the Web Ontology Language (OWL). However,
if access control policies have been assigned to the data we also need a mecha-
nism to propagate these policies when we infer new triples from existing ones.
In addition Rule based Access Control reasoning is required to support both
permission management and data querying over RDF based on access control
policies. Either backward or forward chaining could be used for both the data
and the access rights inference.

Querying. SPARQL [20] is the standard query language for RDF however the
language itself does not provide any form of access control. It thus needs to be
extended to ensure access is only given to RDF triples the user has been granted
access to either explicitly or implicitly.

4.2 Implementation

In our prototype the data integration is performed using XSPARQL [12], a trans-
formation and query language for XML, RDB, and RDF, that allows data to be
extracted from existing RDBs. Whereas the access control enforcement frame-
work is a Prolog implementation of the Annotated RDF [23] framework which
enables reasoning over annotated triples.

RDB2RDF. XSPARQL was chosen over other alternative RDB2RDF ap-
proaches as both RDB and XML data formats are used extensively in organ-
isations and also it has built-in support for the NQuad format. In this paper
we focus on relational databases but the ability to extract XML, from files or
web-services, is desirable.

Annotated RDF. Our Prolog Annotated RDF [23] implementation, allows
domain specific meta-information in the form of access rights to be attached to
RDF triples. An overview of our annotated RDF access control domain model,
presented in [13], was provided in 3.1. The reasoning component is implemented
by extension of the RDFS inference rules. It allows the Annotated RDF reasoning

engine to automatically determine the annotation values for any inferred triples
based on the annotations of the premises. As such, we are actually performing
data and annotation reasoning in the same step. We also support reasoning over
the access rights alone, by allowing permissions to be propagated according to the
rules presented in Section 3.3. With the exception of (R5) our prototype provides
for the presented rules, either in the form of inference rules or by explicit rules
in the domain modelling. Our prototype currently does not cater for rule (R5)
because the existing implementation only handles read permissions. However we
are in the process of extending this prototype to support the other forms of
access rights.

AnQL. Our query engine relies on an extension of SPARQL, AnQL [11], which
allows the annotated RDF data to be queried. AnQL extends SPARQL to con-
sider also a fourth element in the query language. However, for the enforcement
of access rights, the end user must not be allowed to write AnQL queries as this
would pose a security risk, thus we rely on a translation step from SPARQL into
AnQL. The Query Engine takes a SPARQL query and transparently expands
it into an AnQL query, using the list of credentials provided by the authenti-
cation module. As authentication is outside the scope of this paper, we simply
extract end user credentials from the RDB, and maintain a mapping between the
enterprise employees and their usernames, groups and roles. The AnQL query
is subsequently executed against the Annotated RDF graph, which guarantees
that the user can only access the triples annotated with their credentials.

4.3 Evaluation

The benchmark system is a virtual machine, running a 64-bit edition of Windows
Server 2008 R2 Enterprise, located on a shared server. The virtual machine has
an Intel(R) Xeon(R) CPU X5650 @ 2.67GHz, with 4 shared processing cores and
5GB of dedicated memory. For the evaluation we use XSPARQL to extract both
the data and the access rights from two separate software application databases:
a document management system (DMS) and a timesheet system (TS). We sub-
sequently use the rules specified in 3.3 to propagate the permissions to relevant
triples. In the case of the TS we only assigned existing access rights to one triple
and let R1 propagate the permissions to all triples with the same subject. As for
the DMS we extracted the existing URI hierarchy and the associated permis-
sions and used R3 to propagate the permissions to all data extracted depending
on their location in the hierarchy. Existing type information was extracted from
both systems and propagated using R4. Finally we input the organisation struc-
ture as facts in the Prolog application and used R2 to propagate permissions
based on this hierarchy. As our prototype only supports read access we did not
consider R5 in our evaluation.

The different datasets (DS1, DS2, DS3, and DS4) use the same databases,
tables, and XSPARQL queries and differ only on the number of records that are
retrieved from the databases.

Table 3. Dataset description

DS1 DS2 DS3 DS4

database records 9990 17692 33098 63909
triples 62296 123920 247160 493648
file size (MB) 7.6 14.9 29.9 59.6

Table 4. Prototype evaluation

DS1 DS2 DS3 DS4

RDB2RDF (sec) 39 52 92 179
Import (sec) 3 5 10 19
Inference engine (sec) 3218 11610 32947 58978
Inferred triples 59732 117810 237569 473292

Table 3 provides a summary of each dataset, stating the number of database
records queried, the number of triples generated, and the size in MegaBytes
(MB) of the NQuads representation of the triples.

RDB2RDF and Inference. Table 4 includes the time the data extraction
process took in seconds (sec), the time it took to import the data into Prolog
(sec), the evaluation time of the access control rules detailed in 3.3 (sec), and the
number of triples inferred in this process. Fig. 3a provides a high level overview
of the times for each of the datasets. Based on this simple experiment we have
hints that the extraction process and the loading of triples into Prolog behave
linearly but more data intensive tests are still required. As the inferencing times
are highly dependent on both the rules and the data further experimentation is
required in this area.

Query Engine. For the evaluation of the AnQL engine we created three sepa-
rate query sets 1TP , 2TP and 3TP . The query sets were each composed of three
queries with: one triple pattern 1TP ; two triple patterns 2TP ; or three triple
patterns 3TP . Each query was run without annotations (∅), with a credential
that appears in the dataset (∃) and with a credential that does not appear in
the dataset (6 ∃). The results displayed in Table 5 were calculated as an average
of 20 response times excluding the two slowest and fastest times. Based on this
experiment we can see that there is an overhead for the evaluation of annotations
when you query using a single triple pattern Fig. 3b. However queries with a
combination of annotations and either two or three triple patterns, Fig. 3c and
Fig. 3d respectively, out perform their non annotated counterparts. Such be-
haviour is achieved in our implementation by pushing the filters into the triple
patterns as opposed to querying the data and subsequently filtering the results.
The experiments do not show a significant performance increase over the four

Table 5. Query execution time in seconds

DS1 DS2 DS3 DS4

1TP
∅ 0.0000 0.0003 0.0013 0.0042
∃ 0.0065 0.0159 0.0300 0.0654
6 ∃ 0.0081 0.0189 0.0316 0.0670

2TP
∅ 0.0247 0.0544 0.1497 0.2679
∃ 0.0228 0.0638 0.0898 0.1845
6 ∃ 0.0094 0.0198 0.0338 0.0690

3TP
∅ 0.0169 0.0482 0.1322 0.2213
∃ 0.0241 0.0593 0.0943 0.1741
6 ∃ 0.0101 0.0192 0.0316 0.0609

datasets, between queries with annotations Fig. 3e and those without annota-
tions Fig. 3f. Furthermore we can see that there is no overhead associated with
queries where the annotation is not present in the dataset. In fact such queries
are actually more efficient when the query is made up of two or three triple
patterns.

5 Related Work

In recent years, there has been an increasing interest access control policy spec-
ification and enforcement using Semantic Technology, KAos [3], Rein [10] and
PROTUNE [2] are well known works in this area. Policy languages can be cate-
gorised as general or specific. In the former the syntax caters for a diverse range
of functional requirements (e.g. access control, query answering, service discovery
and negotiation), whereas in contrast the latter focuses on just one functional
requirement. Two of the most well-known access control languages, KAos [3]
and Rei [10], are in fact general policy languages. Although the models and the
corresponding frameworks are based on semantic technology the authors do not
consider applying their model or framework to RDF data.

The authors of Concept-Level Access Control (CLAC) [15], Semantic-Based
Access Control (SBAC) [9] and the semantic network access control models pro-
posed by Ryutov et al. [16] and Amini and Jalili [1] respectively, all propose
access control models for RDF graphs and focus on policy propagation and
enforcement based on semantic relations. Qin and Atluri [15] propose policy
propagation of access control based on the semantic relationships among con-
cepts. Javanmardi et al. [9], Ryutov et al. [16] and Amini and Jalili [1] enhance
the semantic relations by allowing policy propagation based on the semantic
relationships between the subjects, objects, and permissions.

Costabello et al. [4] propose a lightweight vocabulary which defines fine-
grained access control policies for RDF data. They focus specifically on modelling
and enforcing access control based on contextual data. Sacco et al. [17] present
a privacy preference ontology which allows for the application of fine-grained

1 2 4 8

101

102

103

104

105

Dataset size in MB (log scale)

T
im

e
in

se
c
o
n
d
s
(l
o
g
sc
a
le
)

RDB2RDF load

inference

(a) Dataset load times

1 2 4 8

0

2,000

4,000

Dataset size in MB (log scale)

T
im

e
in

m
il
li
se
c
o
n
d
s
(l
o
g
sc
a
le
) ∅

∃
6 ∃

(b) Query execution times (1TP)

1 2 4 8

0

0.1

0.2

Dataset size in MB (log scale)

T
im

e
in

se
c
o
n
d
s
(l
o
g
sc
a
le
)

∅
∃
6 ∃

(c) Query execution times (2TP)

1 2 4 8

0

0.1

0.2

Dataset size in MB (log scale)

T
im

e
in

se
c
o
n
d
s
(l
o
g
sc
a
le
)

∅
∃
6 ∃

(d) Query execution times (3TP)

1 2 4 8

0

0.05

0.1

0.15

0.2

Dataset size in MB (log scale)

T
im

e
in

se
c
o
n
d
s
(l
o
g
sc
a
le
)

∃1TP

∃2TP

∃3TP

(e) Query execution times (∃)

1 2 4 8

0

0.1

0.2

Dataset size in MB (log scale)

T
im

e
in

se
c
o
n
d
s
(l
o
g
sc
a
le
)

∅1TP

∅2TP

∅3TP

(f) Query execution times (∅)

Fig. 3. Load and Query times across 4 datasets

access control policies to an RDF file. Both Costabello et al. [4] and Sacco et al.
[17] propose frameworks that rely on SPARQL ask queries to determine access
to resources based on the defined vocabularies.

In contrast to existing proposals the solution we present is tightly coupled
with the cornerstone Semantic Web technology (RDF, RDFS and SPARQL). We
propose an integrated solution which extracts data and access rights from the
enterprise software systems into RDF and an enforcement framework which han-
dles reasoning over both the data and the access control statements. Approaches
to date can be summarised as top-down approaches where the authors model
access control based on RDF data structures and the access control requirements
of open systems. We adopt a bottom up approach showing how existing access
control models can be applied to RDF data.

6 Conclusions and Future Work

RDF is a flexible data representation format that can greatly benefit an enter-
prise, not only as a self-describing data model for their existing public data but
also as a means of extending their own data with RDF data freely available on
the Web. The introduction of access control policies and enforcement over RDF
also allows organisations to selectively and securely share information with third
parties, for example with other business partners, supplier or clients. In this pa-
per we proposed a set of rules that allow for the enforcement of commonly used
access control models and presented the components necessary for an RDF ac-
cess control enforcement framework, while detailing our own implementation of
this framework. We also presented some preliminary performance evaluation of
the prototype by using enterprise data supplied by our project partner. Our ap-
proach is to transform SPARQL queries and user credentials into AnQL queries.
As a side effect from the user perspective queries with two or three patterns
appear to run faster. However as we have seen from the benchmark results, it is
still not scalable enough for deployment in an enterprise environment.

As for future work, a combination of both the access control and the prove-
nance domains is planned along with a more scalable implementation of the
proposed framework. In addition, we propose a study of whether more expres-
sive rules are required and their application over access control annotated data.

Acknowledgements. This work is supported in part by the Science Foundation

Ireland under Grant No. SFI/08/CE/I1380 (Lion-2), the Irish Research Council Enter-

prise Partnership Scheme and Storm Technology Ltd. We would like to thank Aidan

Hogan for his valuable comments.

References

1. M. Amini and R. Jalili. Multi-level authorisation model and framework for dis-
tributed semantic-aware environments. IET Information Security, 4(4):301, 2010.

2. P.A. Bonatti, J.L. De Coi, Daniel Olmedilla, and Luigi Sauro. Rule-based policy
representations and reasoning. In Semantic techniques for the web, pages 201–232,
2009.

3. J.M. Bradshaw, Stewart Dutfield, Pete Benoit, and J.D. Woolley. KAoS: Toward
an industrial-strength open agent architecture. In Software Agents, 1997.

4. Luca Costabello, Serena Villata, and Nicolas Delaforge. Linked data access
goes mobile: Context-aware authorization for graph stores. In LDOW - 5th
WWW Workshop on Linked Data on the Web, 2012. URL http://hal.

archives-ouvertes.fr/hal-00691256/.
5. Richard Cyganiak, Andreas Harth, and Aidan Hogan. N-Quads: Enxtending N-

Triples with Context, 2009.
6. Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF

Mapping Language. Candidate Recommendation, W3C, February 2012.
7. Mark Evered. A case study in access control requirements for a health information

system. Second workshop on Australasian information Security, 2004.

http://hal.archives-ouvertes.fr/hal-00691256/
http://hal.archives-ouvertes.fr/hal-00691256/

8. PP Griffiths. An authorization mechanism for a relational database system. ACM
Transactions on Database Systems, 1(3):242–255, 1976.

9. S Javanmardi, M Amini, R Jalili, and Y. GanjiSaffar. SBAC:A SemanticBased Ac-
cess Control Model. In 11th Nordic Workshop on Secure IT-systems (NordSec’06),
Linkping, Sweden, 2006.

10. L. Kagal and T. Finin. A policy language for a pervasive computing environment.
In Proceedings POLICY 2003. IEEE 4th International Workshop on Policies for
Distributed Systems and Networks, pages 63–74. IEEE Comput. Soc, 2003.

11. Nuno Lopes, Axel Polleres, Umberto Straccia, and Antoine Zimmermann. AnQL:
SPARQLing Up Annotated RDF. In Proceedings of the ISWC-10, number 6496 in
LNCS, pages 518–533. Springer-Verlag, 2010.

12. Nuno Lopes, Stefan Bischof, Stefan Decker, and Axel Polleres. On the Semantics
of Heterogeneous Querying of Relational, XML and RDF Data with XSPARQL.
In Paulo Moura and Vitor Beires Nogueira, editors, EPIA2011 – COLA Track,
Lisbon, Portugal, October 2011.

13. Nuno Lopes, Sabrina Kirrane, Antoine Zimmermann, Axel Polleres, and Alessan-
dra Mileo. A Logic Programming approach for Access Control over RDF. In Tech-
nical Communications of ICLP’12, volume 17, pages 381–392. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2012.

14. CJ McCollum, JR Messing, and L. Notargiacomo. Beyond the pale of MAC and
DAC-defining new forms of access control. In Research in Security and Privacy,
1990. Proceedings., 1990 IEEE Computer Society Symposium on, pages 190–200.
IEEE, 1990.

15. Li Qin and Vijayalakshmi Atluri. Concept-level access control for the Semantic
Web. In Proceedings of the 2003 ACM workshop on XML security - XMLSEC ’03,
page 94. ACM Press, 2003.

16. Tatyana Ryutov, Tatiana Kichkaylo, and Robert Neches. Access Control Policies
for Semantic Networks. In 2009 IEEE International Symposium on Policies for
Distributed Systems and Networks, pages 150–157. Ieee, July 2009.

17. Owen Sacco, Alexandre Passant, and Stefan Decker. An Access Control Framework
for the Web of Data. 2011IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications, pages 456–463, November 2011.

18. Pierangela Samarati. Access control: Policies, models, and mechanisms. Founda-
tions of Security Analysis and Design, 2001.

19. RS Sandhu. Role-based access control. Advances in computers, pages 554–563,
1998.

20. Andy Seaborne and Eric Prud’hommeaux. SPARQL Query Language for RDF.
W3C Recommendation, available at http://www.w3.org/TR/rdf-sparql-query/,
W3C, January 2008.

21. Susie Stephens. The Enterprise Semantic Web. In Jorge Cardoso, Martin Hepp,
and Miltiadis D. Lytras, editors, The Semantic Web: Real-World Applications from
Industry, volume 6 of Semantic Web And Beyond Computing for Human Experi-
ence, pages 17–37. Springer, 2007.

22. Octavian Udrea, Diego Reforgiato Recupero, and V. S. Subrahmanian. Annotated
RDF. ACM Trans. Comput. Logic, 11(2):1–41, 2010.

23. Antoine Zimmermann, Nuno Lopes, Axel Polleres, and Umberto Straccia. A Gen-
eral Framework for Representing, Reasoning and Querying with Annotated Se-
mantic Web Data. J. Web Sem., 11:72 – 95, 2012.

http://www.w3.org/TR/rdf-sparql-query/

	Protect Your RDF Data!
	Introduction
	Analysis of Enterprise Access Control Models
	Extending RDF to Support Existing Access Control Models
	Annotated RDF Model
	Support for existing Access Control Models
	Proposed Access Control Rules

	Framework, Implementation and Evaluation
	Access Control Enforcement Framework
	Data Integration.
	Storage.
	Reasoning.
	Querying.

	Implementation
	RDB2RDF.
	Annotated RDF.
	AnQL.

	Evaluation
	RDB2RDF and Inference.
	Query Engine.

	Related Work
	Conclusions and Future Work

